When the best scanner isn’t a scanner (Unication Receivers)

 Unication G5 Dual BandIf you live in an area covered by a Simulcast P-25 radio system you likely have suffered from Simulcast Distortion. This is the interference and missed calls caused by simulcast sites of these radio systems interfering with each other. All scanners have this issue and there are various things one can do to remedy the situation. This includes relocating or reducing the antenna, use of a directional antenna or turning on the attenuator.

Sometimes even this doesn’t help. If you really get in a bind there are other ways to get better reception. For some this means getting a specially programmed two-way radio set up on the system and using it as a monitor. While sometimes these can be programmed for receive only there are problems with this approach. First off is legality. Unless authorized by the system owner it may be illegal to have such a radio set up on the system due to the use of a “System Key”. Some states even This is considered to be intellectual property and restricted to authorized personnel. Even if you got past this hurdle two-way radios for these systems are expensive, sometimes over $5000. Add into that programming software ($300) and cables ($200) and pretty soon you are talking about real money.

The Unication receivers provide a possible solution that is much more reasonably priced, does not require permission or special codes or keys for the system but with reception rivaling that of the expensive radios at a fraction of the cost. The downside is that the Unication is not as flexible as a scanner and does not allow for field programming.

The Unication provides professional quality reception at a hobbyist price. While more expensive than scanners, it receives P25 Simulcast systems as well as the expensive two-way radios do at a much lower price.

ScannerMaster can program the Unication radio for you, be sure to select this option at the time of purchase if you want it. You can also do the programming yourself with a Windows computer, the software is free from Unication. Of course if there are any questions our knowledgeable staff is here to help!

The Unication G4 works in the 700 and 800 MHz. bands. The G5 works in these bands plus another, such as VHF or 2 different UHF bands. Currently they work on Phase 1 systems only but a Phase 2 upgrade will be available soon. This will be a paid update but pricing has not yet been announced.

Trunking System Types Glossary

Earlier we discussed the differences between Type 1 & 2 and Phase 1 & 2 trunking systems. This week we will discuss some other formats of trunking. I choose to use the easier to understand mnemonics of 1 and 2 rather than the more correct I and II for some of these systems. These mnemonics are often interchanged.

“Motorola” trunking systems include Type 1, Type 2 and Type 2i systems. The original Type 1 systems used a 3600 baud control data signal and a Fleets/Subfleet programming style. In time it was found to be too limiting, it restricted the number of subfleets and radios that could be accommodated within the Fleets. Motorola developed what was called Type 2 trunking that used a similar 3600 baud control data signal but removed the restrictions about Fleets and Subflleets and removed many of the limits on radios. Type 2 systems could have more than 65,000 individual radio ID’s and thousands of Talkgroups.

Some Type 1 systems were upgraded, either to Type 2 or to a hybrid system that allowed both Type 1 and Type 2 radios, this was commonly referred to as Type 2i. A later version of Type 2 trunking, called APCO P16, used the same Type 2 control data but allowed either analog or digital modulation.

APCO P25, as we discussed last week, is an all-digital format sold by several manufacturers, including Motorola, Harris and others. The format was developed by and for APCO and is licensed from them. The system was designed to be interoperable between the several vendors but often they add features that only they can provide so as to rope in customers to continue buying their radios instead of radios from other companies. One way to tell a Motorola designed system apart is by the control channels. On Motorola systems the Control Channel rarely changes and there are only 2 to 4 channels that they would rotate to if one becomes unavailable. Harris designed systems can use any of the channels for control data and some of these rotate the control data regularly.

P25 voice is also commonly used on conventional (non-trunked) channels as well.

There are two main types of P-25; Phase 1 and Phase 2 (or Phase I and II). Phase 1 allows a single conversation on a voice channel while Phase 2, a form of TDMA, allows 2 on each channel, effectively doubling the capacity of the system.

Most scanners these days only require the current Control Data channel for many of the P25 and Motorola trunking systems to track them.

EDACS is a trunking system originally sold by General Electric as a competitor with Motorola Type 1 and later Type 2 systems. This comes in 2 different types, the 9600 Baud control data commonly used on 800 MHz. systems and 4800 baud control data mostly used on UHF and 900 MHz. EDACS systems can use either analog voice or digital voice, called ProVoice. While any trunking scanner can handle analog EDACS systems only certain Uniden scanners (BCD325P2, BCD996P2, BCD436HP and BCD536HP) scanners can monitor ProVoice operations and these require the ProVoice paid upgrade.

EDACS is commonly used for public safety and less often in business applications. It shares many features with the Motorola trunking formats but is not compatible with it. It can be used as Single Site, Simulcast or Networked or some combination of these.

After several years GE sold the EDACS product line and it bounced around to several companies before landing at Harris Communications. Since EDACS is no longer sold or supported by Harris many of the systems have been shut down or converted to other formats. At some point EDACS systems will all be shut down as parts become unavailable for repairs.

To program an EDACS system into a scanner one needs to put the channels in their proper assigned slots. This is called the “LCN” (Logical Channel Number). This is because the radio only sends the channel number, it is up to the scanner or other radio to match this with the actual frequency.

LTR (Logic Trunked Radio) is a popular format for business users and occasionally used for public safety. This format does not use a dedicated control channel like Motorola, EDACS or P25 systems do. Instead data is sent piggybacked onto the regular traffic on the channel advising specific radios to go to a channel for a message. While this allows all channels to be used for voice messages it is not as robust as other systems so is not often used for police and fire use.

One can tell is an LTR system is in us, there is a characteristic repeater key-up on most channels. This is sending data to radios assigned to that channel as it’s “Home Channel”. Most trunking scanners can handle LTR systems, the trick is determining the LCN slots properly.

DMR/TRBO/NXDN systems can be either conventional or trunked. Some systems can be trunked with a single channel, using sub-audible codes to separate the groups. These systems use TDMA for voice traffic so multiple conversations can be carried on one channel.

While used mostly for business activities these systems occasionally are used for public safety, especially in the SE states.

MotoTRBO is a brand name used by Motorola for it’s DRM offering. While there are slight differences a DMR scanner works fine for unencrypted TRBO systems.
DMR is available on certain Uniden and Whistler scanners.

NXDN trunking is very similar to DMR but just different enough to require a different mode. As of this writing (Spring 2017) NXDN was only available on the TRX-1 and TRX-2 scanners by Whistler.

Type 1, Type 2, Phase 1, Phase 2, what’s the difference?

There is often confusion between different types of trunked systems. One of the most confusing things is the names of some systems. We get calls and letters all the time asking about Phase 2 and Type 2 systems and whether a particular scanner will work on them. They are different and the difference will determine if your scanner will work with it.

TYPE 2 (more accurately but less often written as TYPE II) systems are older Motorola trunking systems that use 3600 baud control data channels. These are commonly referred to as just “Motorola” systems when programming scanners. These were an evolution from the original Type 1 and Type 2i systems. The difference between Type 1, 2i and 2 systems is the way talkgroups are developed. Type 1 systems use a Fleet/Subfleet system that resulted in limited flexibility to assign talkgroups. Most of these systems have been shut down or updated and very few remain in use. Type 2 systems had a different method of assigning talkgroups and allowed greater flexibility. Some systems were called Type 2i, and were a hybrid between Type 1 and Type 2 systems.

Newer Type 2 systems, referred to as APCO P16 systems, allowed either digital, analog or both forms of modulation. There are still many of these systems in use all over the country.

PHASE 1 and PHASE 2 (more accurately referred to as Phase I and Phase II) systems are totally different than Type 1 or Type 2 systems. Phase 1 and 2 systems are forms of APCO P-25 digital systems that use 9600 baud control data channels and all digital modulation. Phase I systems have a single voice path per frequency while Phase II allows 2 voice paths per frequency, effectively doubling the amount of traffic a set number of channels can handle.

It gets even more confusing when programming some radios. Some scanner program the Type 2 and Phase 1 or 2 systems with the same system type, others have different selections. On the user end, most Motorola P25 (Phase 1 or 2) radios are also capable of being used on the older Type 2 systems.

Next week we will look at some of the other trunking systems like EDACS, LTR and TRBO.

ProVoice, DMR, MotoTRBO, NXDN and scanners FAQ

Recently Uniden and Whistler announced scanners with capabilities of handling new digital formats. Each company has announced updates to their top-tier scanners and Whistler has also announced new models.

Here are some of the more frequently asked questions:

Q: What is DMR?

A: Digital Mobile Radio (DMR) is a digital format, similar in function to APCO P-25. It is mostly used by businesses but occasionally by public safety users. It is less expensive than P25 for the end user but it is not compatible with P-25 radios. It can be used in conventional or trunked modes.

Q: What is MotoTRBO?

A: It is Motorola’s implementation of DMR. They added a few features to the DMR standard and named it TRBO. DMR scanners can handle TRBO.

Q: What about encryption?

A: If the user selects the Encrypted mode then scanners cannot monitor it. There are no modifications or upgrades that can be made to get past radio encryption.

Q: What is Uniden offering?

A: Uniden has announced updates to its BCD436HP (handheld) and BCD536HP (desktop/mobile) scanners. One update is for ProVoice, a digital format used for some public safety purposes in parts of the country. They have also announced updates for DMR and MotoTRBO formats occasionally used by public safety but more often used by business users. Each of these updates are paid and ScannerMaster can install them for you.

Q: What is Whistler offering?

A: Whistler has announced updates for its WS1080 and WS1088 (handheld) and WS1095 and WS1098 (Desktop/mobile) scanners for DMR and MotoTRBO. These are free updates that are installed by updating the firmware in EZ-Scan. Again, ScannerMaster will be happy to install these for you as part of our Setup & Optimize service. No ProVoice upgrades have been announced for Whistler scanners.

In addition, Whistler has announced 2 new scanners. The TRX-1 (handheld) and TRX-2 (desktop/mobile) will work on DMR and MotoTRBO out of the box and will be updatable later for NXDN. (Expected about January 2017.)

Q: What about NXDN?

A: NXDN is a separate digital format used by some public safety agencies and businesses. It is slated to be used by the nations railroads once the required updates are made to the railroad’s infrastructure and radio fleet.

Whistler has already announced that NXDN will be available sometime in late 2016/early 2017 for its TRX-1 and TRX-2 scanners but will not be available for others. Uniden has not announced any NXDN updates yet but has said they are working on “other formats”.

Q: What about DMR trunking?

A: Both the Uniden and Whistler scanners will track DMR trunking systems.

 Q: My question isn’t answered here. Where can I go for more information on these scanners or to buy them?

A: You can send your questions via email or call 1-800-SCANNER.

ProVoice: What is it and do I need to update my scanner for it?

Recently Uniden announced an update for its BCD436HP and BCD536HP scanners to allow them to monitor ProVoice digital radio systems. This has led to a lot of questions that we will try to answer here.

What is ProVoice?

ProVoice is a form of digital modulation used on some EDACS trunking systems, somewhat similar to APCO P25. Most digital scanners cannot hear it but Uniden has found a way to make it work on their 436 and 536 scanners.

Do I need the upgrade?

If you want to hear a ProVoice system then yes you do. There are several large wide-area systems using ProVoice, Uniden has produced a map showing most known systems. See http://info.uniden.com/UnidenMan4/ProVoice for a map.

Why are they charging for it? It should be free!

Uniden has to pay the license holders a fee for every radio they sell that has this technology. They also have to pay for all the research and development costs.

How do I update my radio?

If you buy the radio from us we can install the ProVoice update for you before we send the radio to you. If you want to update a radio you already have go to http://my.uniden.com to buy the upgrade.

I have a different scanner; will it work with ProVoice?

At this time only updated 436 and 536 scanners will work with ProVoice.

The Digital Blues (or why does my local digital system sound like #$^?)

So you bought that fancy new digital scanner and while it usually works great, sometimes on certain digital systems it doesn’t seem to sound right. Sometimes it just drops words or phrases but sometimes it drops the whole conversation.

You try moving the scanner around or connect to a better antenna and it doesn’t help or even gets worse. Before you throw the scanner against the wall in frustration read on:

We feel your pain! The problem isn’t you or in or the programming. It is called “Simulcast Digital Distortion” or more commonly “Bit Error”. Our friends at RadioReference have a great technical explanation of this in their Wiki at http://wiki.radioreference.com/index.php/Simulcast_digital_distortion

The 10 cent explanation of this is that you have signals from more than one tower arriving at your radio at ever-so-slightly different times. These signals compete with each other and tend to null each other out. This is why sometimes the radio will stop but you won’t hear any or part of it.

There are a couple things you can do to help get past this issue. If your radio has an attenuator function try that first. This reduces the signal and hopefully will force your radio to only be able to receive a single tower site. You can also try moving the antenna around the room to see if you can find a “sweet spot”. If you are using a telescoping antenna try adjusting it to different lengths or angles. Also try opening the squelch all the way. If all you are listening to is the digital system then this will not affect other channels.

If all of this fails then you may need to try a directional antenna. Commonly called “Yagi’s” these antennas will direct your reception in a single direction and hopefully force your radio to hear only a single tower.

This type of digital distortion usually is less prevalent with newer models of scanners and firmware updates usually reduce it as well. Make sure you have a current model scanner and that its firmware is up to date.

 

Scanner Tip: It is a Digital World!

Many areas of the country have switched to “Digital”. What does this mean for the scanner listener? What is “Digital” anyway?

First, before we go any further, the number one question we get about digital scanners is whether they will also work on analog. The answer is YES. All digital scanners work just fine on analog channels, always have and always will.

Digital radio means that instead of using a regular AM (where the amplitude [strength] is changed) or FM (where the frequency is modulated or changed) signal , a digital signal type is used. This is a signal that is converted to the base 0’s and 1’s, compressed, and sent out on the airwaves. A digital receiver then converts it back and lets you hear it.

There are several types of digital that are of interest to scanner listeners. The most common for police, fire and other public safety use is APCO’s P25 system. This is widely used by both trunked and conventional (non-trunked) radio systems across the country. Several manufacturers, like Motorola, Harris and others sell P25 systems and equipment. While the P25 standards are supposed to ensure that any companies radios will work on the various systems, in practice some companies often add new “features” that tend to lock out other company’s radios from working with the system.

P25 comes in several flavors. “Phase 1” is the original single channel-per-frequency protocol used on conventional systems and most trunked P25 systems. “Phase 2” P25 effectively splits channels using TDMA (See technobabble below) to allow 2 simultaneous conversations on the same frequency, effectively doubling the capacity of a trunked system. If your system uses Phase 2 be sure to get a Phase 2 capable scanner!

Technobabble here: Phase 2 uses Time Division Multiple Access, more commonly known as TDMA. The radio system divides a radio signal into timeslots of tiny fractions of a second. In Phase 2 systems a certain time slot is assigned to the “0” channel and the other slots are assigned to the “1” channel. This allows 2 conversations to be held at the same time on the same frequency. The communications are restored at the receiver so it can be processed and heard by the user. Decoding software like UniTrunker or Pro96Com will show these sub-channels as “851.0375/0 and 851.0375/1”.

Some areas of the country have gone to a system called “OpenSky”, manufactured by Harris. While these systems have not been successful in many instances, the systems in place cannot be monitored by scanners. Harris has since dropped OpenSky from its catalog and is selling P25 systems now.

One trend that is growing in some areas is the use of various “DMR” systems. These are sold under various trade names like MotoTRBO, NXDN and others. They all use fairly similar digital protocols but current consumer scanners do not cover them. There are some SDR (Software defined radio) and advanced receivers (like the new AOR DV1) that will allow one to monitor these systems. The reason many agencies select these is usually cost, the radios are fairly cheap, especially when compared to P25 radios. While they may not be as durable, the replacement costs are often less than a repair would be. Businesses however have embraced these cheaper forms of digital radio and they are common on business channels. Railroads have agreed on using NXDN digital modes but implementation has been very slow. Ham radio operators use some of these also, as well as D-Star.

Do not confuse digital voice with encryption. While it is true that many digital systems are encrypted these days, most are not and these are perfectly legal to listen to. Also do not confuse digital voice with digital data. Most police and fire agencies use some sort of data systems for MDT’s or video, these systems cannot be monitored without huge budgets and massive computing power. Listening to digital transmissions on an analog only scanner will not work, you will just hear noise.

Some people hear and understand received digital communications better than others. The absence of background noise sometimes makes it uncomfortable for some users, since it can be mistaken for non-radio conversations. Digital certainly sounds different than analog but occasionally causes issues with things like firefighters protective gear. Usually it is just a matter of getting used to how it sounds. In addition, when digital signals are weak they tend to get garbled. Many agencies call this “going digital” since it makes a weird noise.

Digital scanners are more expensive than analog ones. This is mostly due to licensing requirements for the technology. While prices have gone down recently they still are usually about twice as expensive than analog scanners with similar features.

Will there be more scanners with DMR modes like TRBO and NXDN? We don’t know yet, but if and when they do become available we will be among the first to have them. The AOR DV1 is available now and does receive several of the digital modes.

Scanner Tip: Everything you need to know about trunking but were afraid to ask

In the old days of scanning things were pretty simple, you put in the local police frequency to listen to the police. In many parts of the country however, this no longer works. Most cities, many counties and even entire states use Trunking Systems. What are trunking systems and how do they work?

The best way to explain how a trunking system works is the analogy of a set of bank teller lines. The bank has 5 tellers, you can line up at any of the 5 lines and hope your line goes faster than the others. Then you get stuck behind the lady that wants to have her penny jar counted by hand…

These days however, banks have a single queue and you go to the next available teller when you reach the head of the line. This is exactly how a trunked radio system works: All users are in one queue and get assigned the next available channel. Instead of having a separate frequency for the FD, one for the PD and another for the ambulance, they just go to the next channel that isn’t being used.

All this is controlled by a computer system called, appropriately enough, a “Controller”. The Controller watches the system and when a radio requests to talk it assigns that radio and any other radio in its group to a channel. All this happens in a fraction of a second.

Radios have all the frequencies used by the system programmed into them and the system is broken down into various virtual channels, called “Talkgroups”. Talkgroups are assigned to various uses like channels would have been before. For example, Mayberry PD might be assigned Talkgroup 101 for Dispatch, 102 for Car-Car and 103 for Detectives. Mayberry FD might be assigned Talkgroup 123 for Dispatch, 124 for Fireground and 125 for Tactical. If Mt. Pilot is sharing the system they might be assigned Talkgroup 287 for Police Dispatch and so on.

There are several types of trunking systems but they all work in much the same way. There are differences in the way they get programmed into scanners as well. The main types of trunked systems in use by Public Safety agencies in the USA include Motorola, EDACS, LTR, APCO25 Phase 1 and APCO25 Phase 2.

For scanner listeners these trunked systems add a layer of complexity to the programming. Depending on the type of scanner and the type of trunked system the method used to program differs. For newer Unidens you program in a “System” to identify the type of trunking, then “Sites” to put in the frequencies used and lastly “Groups” for the talkgroup listing. Whistler, GRE and Radio Shack scanners with Object Oriented programming work differently. On LTR and EDACS systems you have to identify the proper “LCN” channel numbers, these are usually well documented at www.radioreference.com. Motorola and APCO25 systems do not need the frequencies in any particular order.

HomePatrol and other scanners with the Database feature will have these Trunked System parameters already programmed so you can just select the Service and location to listen to them. They do all the heavy lifting for you.

Keep an eye on the ScannerMaster Blog for our explanation of Digital operations!

New Product – Indoor 762-894 MHz 5dB Gain Omni Antenna W/Desk Stand

 Finally there is an omni-directional indoor antenna option for 700-800 MHz with some serious gain. The Indoor 762-894 MHz 5dB Gain Omni Antenna W/Desk Stand comes complete with desk stand and 6 feet of coax cable with a BNC connection for your scanner. This sharp looking but very compact antenna packs a punch bringing in digital and analog 700 and 800 MHz systems. Its also does an excellent job of also receiving 400-500 MHz channels as well.

Includes the following:

  • 762-894 MHz 5dB Panorama Elevated Omni Antenna
  • BNC Female to N Male Connector
  • RG58 Jumper Cable, 6′, BNC Male to BNC Male
  • Desk Stand